Tocopherol Cyclases—Substrate Specificity and Phylogenetic Relations
نویسندگان
چکیده
In the present studies, we focused on substrate specificity of tocopherol cyclase, the key enzyme in the biosynthesis of the tocopherols and plastochromanol-8, the main plant lipid antioxidants, with special emphasis on the preference for tocopherols and plastochromanol-8 precursors, taking advantage of the recombinant enzyme originating from Arabidopsis thaliana and isolated plastoglobules, thylakoids and various model systems like micelles and thylakoids. Plastoglobules and triacylglycerol micelles were the most efficient reaction environment for the cyclase. In various investigated systems, synthesis of γ-tocopherol proceeded considerably faster than that of plastochromanol-8, probably mainly due to different localization of the corresponding substrates in the analyzed lipid structures. Moreover, our study was complemented by bioinformatics analysis of the phylogenetic relations of the cyclases and sequence motifs, crucial for the enzyme activity, were proposed. The analysis revealed also a group of tocopherol cyclase-like proteins in a number of heterotrophic bacterial species, with a conserved region common with photosynthetic organisms, that might be engaged in the catalytic activity of both groups of organisms.
منابع مشابه
Crystal structure of the guanylyl cyclase Cya2.
Cyclic GMP (cGMP) is an important second messenger in eukaryotes. It is formed by guanylyl cyclases (GCs), members of the nucleotidyl cyclases class III, which also comprises adenylyl cyclases (ACs) from most organisms. To date, no structures of eukaryotic GCs are available, and all bacterial class III proteins were found to be ACs. Here we describe the biochemical and structural characterizati...
متن کاملNucleotidyl Cyclase Activity of Particulate Guanylyl Cyclase A: Comparison with Particulate Guanylyl Cyclases E and F, Soluble Guanylyl Cyclase and Bacterial Adenylyl Cyclases Cyaa and Edema Factor
Guanylyl cyclases (GCs) regulate many physiological processes by catalyzing the synthesis of the second messenger cGMP. The GC family consists of seven particulate GCs (pGCs) and a nitric oxide-activated soluble GC (sGC). Rat sGC α1β1 possesses much broader substrate specificity than previously assumed. Moreover, the exotoxins CyaA from Bordetella pertussis and edema factor (EF) from Bacillus a...
متن کاملCharacterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function.
Tocopherols are lipophilic antioxidants synthesized exclusively by photosynthetic organisms and collectively constitute vitamin E, an essential nutrient for both humans and animals. Tocopherol cyclase (TC) catalyzes the conversion of various phytyl quinol pathway intermediates to their corresponding tocopherols through the formation of the chromanol ring. Herein, the molecular and biochemical c...
متن کاملHypotheses for the origin and early evolution of triterpenoid cyclases
Hopanes and steranes are found almost universally in the sedimentary rock record where they often are used as proxies for aerobic organisms, metabolisms, and environments. In order to interpret ancient lipid signatures confidently we require a complementary understanding of how these modern biochemical pathways evolved since their conception. For example, generally it has been assumed that hopa...
متن کاملGuanylyl cyclase sees the light
Cyclic guanosine monophosphate (cGMP) is a critical second messenger that regulates cardiovascular function and vision in humans. Two recent papers, including one in BMC Structural Biology, have revealed atomic structures of the enzymes that catalyze the synthesis of cGMP providing new clues about the molecular basis of substrate specificity and allosteric regulation in nucleotide cyclases.
متن کامل